

In this post, we will explore fundamental geometry concepts such as the perpendicular bisector and angle bisector. These are the following topics we will study in this article:

- 1. What is a perpendicular bisector?
- 2. The perpendicular bisector theorem
- 3. What is an angle bisector?
- 4. The angle bisector theorem
- 5. Examples of both angle bisector and perpendicular bisector

# What is a perpendicular bisector?

#### A perpendicular





Let us gradually break down the perpendicular bisector by first defining what perpendicular is. If two distinct lines, rays, or line segments intersect at 90° or form a right angle with each other, it is called perpendicular lines.

The above figure shows that the line segment AB intersects the line segment CD at point F, thus forming a right angle. Hence, they're called perpendicular lines.

#### A bisector



A **bisector** is an object (line, line segment, or ray) that intersects another object or line segment in such a way that the segment is divided into two equal parts. Also, a bisector cannot bisect a Line as Line does not have a finite length.

Let's take a look at the example above to understand how a bisector works. In the above figure, seg AB bisects seg CD such that it divides the segment into two equal parts.

#### A perpendicular bisector



Once we understand what a perpendicular line and bisector are, defining a perpendicular bisector becomes simple.

A perpendicular bisector is a line, line segment or ray that bisects a segment at a right angle and divides the segment into two equal parts. In short, a perpendicular bisector is a combination of a perpendicular line and a bisector.

Further to know how to construct a perpendicular bisector, I recommend you watch this following video  $\square$ 

# Perpendicular bisector theorem





Furthermore, by combining all these points, we may finally comprehend the perpendicular bisector theorem.

**Statement:** Every point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.

**Given:** line l is the perpendicular bisector of seg AB at point M. Point P is any point on l.

**To prove:** PA = PB

Construction: Draw Seg AP and Seg BP

| Proof:                            | In $\Delta$ PMA and $\Delta$ PMB |
|-----------------------------------|----------------------------------|
| Seg PM 🛛 Seg PM                   | Common side                      |
| ∠PMA [] ∠PMB                      | Each is a right angle            |
| Seg AM 🛛 Seg BM                   | Given angle                      |
| $\Box \Delta PMA \Box \Delta PMB$ | SAS test (side angle side test)  |



□ Seg PA □ Seg PB □ l (PA) = l (PB)

Hence every point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.

# **Converse of perpendicular bisector theorem**



**Statement:** Any point equidistant from the end points of a segment lies on the perpendicular bisector of the segment.

**Given:** Point P is any point equidistant from the end points of seg AB. That is, PA = PB.

**To prove:** Point P is on the perpendicular bisector of seg AB.

**Construction:** Take mid-point M of seg AB and draw line PM.

**Proof:** In  $\triangle$  PAM and  $\triangle$  PBM





seg PA [] seg PBperpendicular bisector theoremseg AM [] seg BMmidpointseg PM [] seg PMcommon side $[] \Delta PAM [] \Delta PBM$ common side $[] \angle PMA [] \angle PMB$ But  $\angle PMA + \angle PMB = 180^{\circ}$  $[] \angle PMA + \angle PMA = 180^{\circ}$  $2\angle PMA = 180^{\circ}$  $[] \angle PMA = 90^{\circ}$ seg PM  $\perp$  seg ABBut Point M is the midpoint of seg AB according to construction

Therefore, line PM is the perpendicular bisector of seg AB. So, point P is on the perpendicular bisector of seg AB.

### What is an Angle bisector?

Just like how a bisector divides a line segment into two equal halves, an angle bisector is a ray, line, or line segment that divides an angle into two equal parts.

#### Construction of an angle bisector

Please refer to the below video to visualize the construction of an angle bisector.

### **Angle bisector theorem**





**Statement:** If a point is on the angle bisector, then it is equidistance from the sides of the angle.

**Given:** Ray A is the bisector of ∠BAC Point D is any point on Ray A.

To find: Seg ED [] Seg DF

#### Solution:

We know that Ray A bisects  $\angle BAC$ 

 $\square$  Ray AB  $\bot$  Seg ED and Ray AC  $\bot$  Seg DF

According to the figure,

```
\angle AED and \angle AFD are right angles all perpendicular lines are right angles

\Box \angle AED \Box \angle AFD are right angles all right angles are congruent
```



| $\Box \angle BAD \Box \angle FAD$                 | definition of angle bisector                                |
|---------------------------------------------------|-------------------------------------------------------------|
| AD AD                                             | common side                                                 |
| $\Delta \text{ AED } \square \Delta \text{ AFD }$ | AAS                                                         |
| 🛛 Seg ED 🔲 Seg DF                                 | corresponding parts of congruent triangle is also congruent |

Hence, it is proved that if a point on the angle bisector (e.g., D), then it is equidistant from the side of the angles (seg ED  $\square$  seg DF).

# **Solved Examples:**

#### 1) Find the value of x for the given triangle using the angle bisector theorem.



#### Solution:

Given that,

PD = 12 PQ = 18 QR = 24 DR = x

According to angle bisector theorem,

PD/PQ = DR/QR

Now substitute the values, we get

12/18 = x/24X = (<sup>2</sup>/<sub>3</sub>)24 x = 2(8) x = 16

Hence, the value of x is 16.

#### 2) Find x and length of each segment.



#### Solution:

In the above figure, the line WX is perpendicular bisector to segment ZY.

 $\Box \angle WXY = 90^{\circ}$  By perpendicular bisector theorem  $\Box ZX = XY$ 

Also,

Seg WZ  $\square$  Seg WY By perpendicular bisector theorem  $\square 2x + 11 = 4x - 5$  Given  $\square 16 = 2x$  $\square X = 16/2$  $\square X = 8$ 

### Length of segments

Seg WZ = 2x + 11= 2(8) + 11= 16 + 11= 27Seg WY = 4x - 5= 4(8) - 5= 32 - 5= 27

**Unsolved Examples:** 

1) Find the value of x in  $\Delta$  ABC.





Ans: 8

2) In  $\triangle$  ABC pictured below, AD is the angle bisector of  $\angle$  A. If CD = 9, CA = 12 and AB = 16, find BD.







Ans : BD= 12

#### **Related topics:**

- Isosceles triangle theorem
- Basic Concepts in Geometry
- <u>Pythagorean Theorem</u>

If you have any doubts regarding the article or the examples, please post them in the comments section.